Uncertainty Principle and Compatible Observables

نویسنده

  • B. Zwiebach
چکیده

As we know, observables are associated to Hermitian operators. Given one such operator A we can use it to measure some property of the physical system, as represented by a state Ψ. If the state is in an eigenstate of the operator A, we have no uncertainty in the value of the observable, which coincides with the eigenvalue corresponding to the eigenstate. We only have uncertainty in the value of the observable if the physical state is not an eigenstate of A, but rather a superposition of various eigenstates with different eigenvalues. We want to define the uncertainty ΔA(Ψ) of the Hermitian operator A on the state Ψ. This uncertainty should vanish if and only if the state is an eigenstate of A. The uncertainty, moreover, should be a real number. In order to define such uncertainty we first recall that the expectation value of A on the state Ψ, assumed to be normalized, is given by (A) = (Ψ|A|Ψ) = (Ψ, AΨ) . (1.1) The expectation (A) is guaranteed to be real since A is Hermitian. We then define the uncertainty as the norm of the vector obtained by acting with (A − (A)I) on the physical state (I is the identity operator):

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement Uncertainty Relations for Position and Momentum: Relative Entropy Formulation

Heisenberg’s uncertainty principle has recently led to general measurement uncertainty relations for quantum systems: incompatible observables can be measured jointly or in sequence only with some unavoidable approximation, which can be quantified in various ways. The relative entropy is the natural theoretical quantifier of the information loss when a ‘true’ probability distribution is replace...

متن کامل

Experimental Test of Heisenberg's Measurement Uncertainty Relation Based on Statistical Distances.

Incompatible observables can be approximated by compatible observables in joint measurement or measured sequentially, with constrained accuracy as implied by Heisenberg's original formulation of the uncertainty principle. Recently, Busch, Lahti, and Werner proposed inaccuracy trade-off relations based on statistical distances between probability distributions of measurement outcomes [P. Busch e...

متن کامل

Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Sum uncertainty relations for arbitrary N incompatible observables

We formulate uncertainty relations for arbitrary N observables. Two uncertainty inequalities are presented in terms of the sum of variances and standard deviations, respectively. The lower bounds of the corresponding sum uncertainty relations are explicitly derived. These bounds are shown to be tighter than the ones such as derived from the uncertainty inequality for two observables [Phys. Rev....

متن کامل

Verifying Heisenberg’s error-disturbance relation using a single trapped ion

Heisenberg's uncertainty relations have played an essential role in quantum physics since its very beginning. The uncertainty relations in the modern quantum formalism have become a fundamental limitation on the joint measurements of general quantum mechanical observables, going much beyond the original discussion of the trade-off between knowing a particle's position and momentum. Recently, th...

متن کامل

Heisenberg’s uncertainty principle for simultaneous measurement of POVMs

A limitation on simultaneous measurement of two arbitrary positive operator valued measures is discussed. In general, simultaneous measurement of two noncommutative observables is only approximately possible. Following Werner’s formulation, we introduce a distance between observables to quantify an accuracy of measurement. We derive an inequality that relates the achievable accuracy with noncom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013